
Implementation and Characterization of Three-Dimensional Particle-in-Cell
Codes on MIMI) Massively Parallel Supercomputcrs

P.M. Lyster, P.C. Liewer, V.K. 13ecyk* and }{.1). Ferraro

Jet Propulsion Laboratory, California Institute of Technology, Pasadena,CA91109
*Physics Departrnenl, University of California Los Ange]cs, CA 90024

Abstract

A three-dimensional electrostatic particle-in-cell (PIC) plasma simulation code has been
developed on coarse-graincd distributed-memory massively parallel computers with
message passing communications. Our implemental.ioll is the generalization to threc-
dimcnsions of the General Concurrent Particle-In-Cell (GCPIC) algorithm. In the GCPJC
algorithm, the particle computation is divided among the processors using a domain
decomposition of the simulation domain. In a three-dimensional simulation, the domain
can bc partitioned into 1-, 2- or 3-dimensional subdomains (“slabs”, “rods”, or “cubes”)
and wc investigate the efficiency of the parallel implementation of the push for all three
choices. The present implementation runs on tic Intel Touchstone Delta machine at
Caltcch; a Multiple-Instruction-Multiple-Data (MINID) parallel computer with 512 nodes.
Wc find that the parallel efficiency of the push is very high, with the ratio of
communication to computation time in the range 0.3%-10.0%. ‘lIc highest efficiency
(>99%) occurs for a large, scaled problem with 643 pmticles per processing node (-134
million prrlicles on 512 nodes) which h~s a push time of about 250 nscc pcr particle pcr
time step. Wc have also developed expressions for the timing of the cwk which are a
function of both code parameters (number of grid-points, particles, etc.) and machine-
dcpcndcnt parameters (effective FLOP rate, and tic effective inter processor bandwidths
for the communication of particles and grid-points). These expressions can be used to
estimate the perfomlancc of scaled problcrns - including those with inhomogcncous
plasmas - to other parallel machines once the machhm-dependent parameters are known.

1. introduction

.

In parliclc-in-cell (PIC) codesl, the trajectories of thousands to millions of particles are
calculated as the particles move under the influcncc of fields computed self-consistent.ty on
a discrctc grid. In plasma PIC codes, the elcctromagncti c forces on the charged particles arc
computed on the grid using source terms computed from the particles. There are typically
tens or hundreds of particles per cell. Linking the parlicle orbit and the field-solve
components of the computation arc the gather/scatter steps that transform quantities back
and forth bctwccn the particles and the grid. These computer codes with an excess of 106
simulation particles have been used to study ionized plasmas with many orders of
magnitude more real particles. The ability to use these ‘macro’-particlcs is tfic reason why
problems have been made traclable on existing cornputcrs. However, there is always the
need to model more accurately the position and velocity space structures that develop in
plasmas, and also to reduce the particle noise. This can only be achieved by using more
(up to 1010) particles on the present and future generations of supcrcomputcrs.
Distribu@d-memory massively-parallel supcrcornputers are a good candidate for this
bccausc of the inherent parallelism in following the trajectories of many particles.

The code wc have developed is an extension of previous work on the General Concurrent
Particle-In-Cell (GCPIC) algorithm2~3 to three dimensions. Particle-in-cell codes are made
up of a particle-pushing component, which includes the two interpolations bctwccn the
particles and the grid (the gather/scatter), and a field-solve. Most PIC codes arc
computationally bound by the particle-pushing step, with the field-solve typically taking
less than 10% of the CPU tinm. In the GCPIC algorithm, the particle computation is
divided among the processors by partitioning the domain and assigning a subdomain (the
grid-points and the particles in it) to each processor. The GCPIC algorithm was designed to
maximize the efficiency of the particle pushing step. The two primary considerations for
any paratlel algorithm are to balance the processor loads and to minimize interpocessor
communication. To balance the loads, the GCPIC subdornains are crcatcd with equal
number of par~icles, which, for non-uniform particle distributions, will have unequal
numbers of grid-points. To minimize intmproccssor communication, the particles and grid-
points arc in the same processor so that the gather/scatter operations can be performed with
no intcrproccssor communication. In the course of the calculation, messages arc nccdcd to
ensure computational consistency of the grid quantities across domain boundaries and to
pass particles to ncw processors as they cross domain boundaries. The efficiency of this
approach is enhanced for coarse-grained parallel computers where a large number of the
particles and grid-points can bc stored pcr processor leading to low ratios of
communication time to computation time.

In the par-ticlc push portion of our GCPIC code, the communication burden is [a] the cost
of passing particles bctwccn processor domains; and [h] the cost of communicating
particle-moment data (density and current) between the edges, or ‘guard-cells’, of the
processor domains; this is needed to ensure consistency of the resulting moment fields

2

(note, this is the only context in which the expression ‘guard-cell’ will bc used in this
paper). These arc the only communication costs which will bc analyzed in this paper. The
field-solve portion involves other communication costs which arc not considered in the
work presented here. In the most general case, the GCPIC uscs a second decomposition “
for the field-solve. For cxamp]c, in the case where distributed fast Fourier transform
(FI+T) techniques arc used, the secondary decomposition needs to have equal grid-points
pcr processor, whcrcm particle load balancing considerations may dictate a non-uniform
primary dccompositionq. The communication burdens for the field-solve arc [a] the cost of
passing particle-morncnt and field quantities between the primary and secondary
decomposition; lb] any costs of communicating field between the edges, or ‘guard-cells’,
of the secondary domains; and [c] any costs of communications in a distributed (say FIT)
field-solve. These costs can be considerablc3, but are very highly dcpcndcnt on the method
used to SOIVC the field equations and thus arc not discussed here. A code with a finite
diffcrcncc field-solve and uniform particle distribution, for which only one decomposition
is ncccssary, has the rninirnal communication costs.4

The code dcscribcd here has been setup to bc a testbcd for the assessment of different
particle and field decompositions, and algorithms. The knowledge wc learn from this is
cxpcctcd to bc used to find efficient decompositions for particle-in-ccl] codes that will study
strongly inhomogcncous plasmas, such as a dense charged particle beam, as well as for the
Numerical Tokamak projects. our results may also be useful for particle hydrodynamic
particle methods which have relatively few panicles pcr cell but whose computational
burden may still bc high. our tcstbcd cocle is a three-dimensional electrostatic PIC plasma
simulation code on Caltcch’s lntcl Touchstone Delta (S 12 processors) machine and Gamma
(64 processors) machines. These are coarse-grained memory Muhip]e-instruction-
Multiple-Data (MIMD) supcrcomputcrs with message passing communication.

For the purposes of this paper it is necessary to distin:,uish bctwccn the dimcnsionality of
the problcrn and the dimcnsionality of the domain decomposition. in this paper the lower
case character ‘d’ refers to the former. ~lcrefore a sil nple onc-dirncnsional two-stream
instability can bc modeled with a d=l code. We arc mostly conccrncd with the
pcrfom~ancc of a three-dimensional code (d=3) since such codes will carry the forefront of
current research. The dimcnsionality of the domain decompositions is spccificd by upper
case ‘D’. In this paper we will describe primary decompositions into slabs (D=l), rods
(D=2), and cubes (D=3). For example, in a one-dimensional slab decomposition a domain
includes all y and z for a range of x; in a two-dimensional “rod” decomposition a domain
includes all z for a range of x and y; for a three dimensional “cube” a domain includes a
range of x, y, and z. In a spatially homogeneous maxwellian plasma the cubes have
minimum surface to vo]urnc ratio and would minimize the number of particles that must bc
exchanged among processors. This situation may change for simulations with directed
beams or currents.

For our electrostatic code on the Delta wc can fit abotlt 290,000 particles pcr node. Using
512 nodes on the Delta, wc have run up to 150 million particles with a push tirnc of 0.25

3

microseconds per particle pcr time step (electrostatic push with tri-quadratic (27 point)
interpolations for gather/scatter).

We have studied the efficiency of the COCIC for the three dimensionalhies of the
decomposition (11=1, 2 and 3) for a fixed problcrn size and varying number of processors.
We found that the efficiency was generally insensitive to the dirnensionality of the
decomposition for the parameters studied and that evcri for these fixed problem-size runs,
the efficiency was quite high (>90%). We expect that for large-scale problems the
dimcnsionality will matter. For example, for a homogeneous maxwcllian plasma the most
cfficicnt decomposition in terms of the surface to volume ratio of the domains - and that
would be the main factor that would determine communication overhead - is D = 3. Runs
were also made in which only the number of particles or grid-points was varied. It was
found that even for a case where 40% of the particles were exchanged at each time step, the
ratio of communication to computation time was still low (5.59io). Wc also discuss the case
where the nodes are fully utilized, that is, scaled problems that fill the physical memory of
each processor, and whose size is proportional to the number of processors Np. For these
runs wc find that the ratio of communication to CPU time is small (-3.0-3) and
approximately independent of Np. We have also analyzed runs with the higher compiler
optimization -04 and evaluated a push time of about 250 nsec pcr particle per time step.

Wc have also dcvclopcd a general formulation for the timing-behavior of the code in terms
of basic parameters -- the total number of processors Np, the maximum memory pcr
processor, the total number of grid-points N~, the total number of simulation particles N,
the effective rate of floating point operations (FLOPS) F, and the effective interprocessor
bandwidths for the communication of particles Bti, and grid-points B~U. Our predictive
formulation is found to be successful in predicting code performance on the Delta (with
some caveats) and can be used to estimate the performance of problems on other parallel
computers once the machine-dependent parameters have been determined.

Our approach represents an implementation that is applicable to coarse-graincd memory
(greater than 1 megabyte per processor) MLMD parallel computers. It is also specific to the
set of problems where long range forces on the geometrical mesh dominate over the short
intcrparticlc forces - that is, the particle-mesh (PM) method. We note that particle codes
that make usc of Data Parallel coding techniques are under studyc’7. These codes often
have the advantage of being more easily debuggable, but with present software arc not
always capable of using the flexible domain decomposition strategies that may be used in
MIMD programming. I)ata Parallel algorithms have also been developed for the case
where some correction to shorl range forces is needed, such as in some stellar dynamics
codcss. Our paper is concerned with both the performance and the. development of a
simple algorithm that predicts the performance of the GCPIC method for given machine
parameters. Our analysis pertains directly to the case of uniform periodic plasmas; wc will
make some comments in Section 4 on the wider rang,e applicability, particularly for non-
uniform plasmas. We note other work in the field that relate to unstructured problems in a
Data Parallel framcworkg, unstructured problems in MIMD~ 0, and fast parallel tree codes
for gravitational and fluid dynamical problcmsll.

4

In Sec. 2, the parallel implementation of the code is prc.scntcd. Section 3 presents
performance results on the efficiency of the particle push for several sets of runs. Section 4
prcscn~s the derivation of the co(ic performance expression and compares predictions with
runs in Sec. 3. our conclusions arc presented in Sec. 5

20 implementation of the Code

The code is implcmcntcd in parallel using the GCPIC algorithm2’q which divides the
particle computation among the processors using a domain decomposition: The
computational domain is partitioned into subdomains with approximately equal nurnbcrs of
particles and a subdomain, including grid-points and particles, is assigned to each
processor. For uniform particle distributions, the subdornains arc equal in size. Each
processor also stores guard-cells around the periphery of its domain which are needed in
interpolations bctwccn particles and grids. A GCPIC decomposition for a two-dimensional
code is shown in Fig. 1.

There arc four steps in the GCPIC particle push. The frost step of the particle push is the
particle update, e.g., the advance of the positions and velocities. l~or the electrostatic code
the electric field E provides the force on the particles and the field is interpolated from the
grid to the position of the particle to obtttin the force at the location of the particle. In the
second step, after updating the positions and velocities, each particle’s ncw position is
checked and particles which have changed subdomains arc exchanged with nearest
neighbor processors. In the third step, the charge density, which is nccdcd to advance the
electric field, is computccl by interpolating (depositing or scattering) the particle charges to
the grid-points. After the trade, all particles arc in the processor with the nearest grid-
points, but, because the particle interpolation may involve several neighboring grid-points,
a particle may deposit a portion of its charge to a grid-point which belongs to neighboring
processor. Therefore, each processor contains enough guard-cells surrounding its
subdomain to insure that the scatter is strictly local. In the fourth step, to obtain a consistent
density for all interior grid-points, the values at the guard-cells arc communicated to
adjacent processors and superimposed at the appropriate cells near the boundary. The
number of guard-cells (NG) needed will depend on the interpolation scheme used. Here,
using a standard three-point quadratic scatter, a maximum of two guard-cells in each spatial
dimension (NG=2) at each edge of the processor domain (or, equivalently, two layers of
guard-cells on each face) arc needed. For applications involving higher order scatter, or for
gyrokinctic simulationslz with particles that arc spread over a gyroradius, more guard-cells
may bc needed. During the particle and grid trldding steps, particles and grid-point data are
buffered and exchanges in groups in order to minimize the effect of the start-up (latency)
time of the communication calls,

In our code, the electric field is obtained using a spectral transform solution of Poison’s
equation. In general, a distributed FFT would be used to form the fastest solution, and to
minimize the memory usage. Since wc are interested in the behavior with respect to the
primary decomposition, wc usc a standard sequential FJT solve OJ] each processor. The
consistent density arrays arc combined into a global array that is present in each processor,

5

and the global electric field is solved, Then, each processor uscs only the field associated
with its primary domain to push the particles. This completes the iteration cycle: particle
updates, moment scatter, and field-solve.

The results presented in this paper correspond to a three. dimensional physical domain.
Periodic boundary conditions arc imposed in the x, y, and z directions. The three
dimensional (d=3) physical domain can be partitioned into subdomain of 1-, 2-or 3-
dimcnsions as shown in Figure 2. This shows a color rendering of select particles; the
particles are colored by processor and there are. 64 processors, four in each dimension.
Recall that wc use the lower case letter d for the dimensionality of the physical domain and
the upper case letter D for the dimcnsionality of the sut)dornains. Figure 2 shows a “slab”
primary decomposition (D:=l) where all the processors have a range of x for ally and z.
Figure 2 also shows the square cross section “rod” decomposition (11=2) and finally Figure
2 shows the D=3 “cubes,” which, for unequal numbers of grid-points in x, y and z, will
not actually be cubes. Several different schemes arc possible for exchanging particles and
guard-cells in a d=3 code with D=l, 2, and 3 partitions. It is clear from Fig. 2, that the
number of processors that must exchange particles and guard-cells will depend on the
dimcnsionality D of the partitioning scheme used. For D=l slab subdomains, particles and
guard-cells will only need to be cxchangcd with neighbors to the left and right (For code
accuracy, particles move less than a grid-point per time step). For 1>=2 and 3, more
processors will bc involved. The method we have chosen is a simple extension of the
method used in the d=l code of Liewer and Dccyk2.

To exchange particles in the present code, each dimension is treated separately. Particles
only need to be exchanged in dimensions which are partitioned, e.:,., for a one-dimensional
partition (D=l) of the x-axis, particle only need to be exchanged in the x direction. In the
code, there is a loop over dimensions x, y and z. First, the global periodic boundary
condition is imposed on the particles. Next, if this dimension is also a partitioned
dimension, each particle’s coordinate in the dimension is checked. l’articles with a
coordinate higher than the processor boundary in the this direction arc placed in a “right”-
going buffer and those with a coordinate lower that than processor bounda~ arc placed in a
“left’’-going buffer. After all particles have been chcckcd, the left- and right-going particles
arc exchanged with the appropriate neighboring processors and the incoming particles are
unpacked. Note that by buffering the particles, only two communication calls arc needed
pcr partition dimension to exchange all t.hc particles; this minimizes the message-latency
overhead. The pseudo code for the exchange follows.

c xleft (3) and xright (3) : processor subdomain bounds>-ies in x, y and z

For i=l,3 Do

Apply global boundary concij. tion

If i is a partitioned dimension then

If (x < xleft. (i)) pack in left-going ~mffer

If (x 2 xright (i)) pack in right-going buffer

Send left-going buffer tcl left and receive from right

6

Unpack buffer received

Send right-going buf”fer t-o right and receive from left

Unpack buffer received

Endi f

Enddo

Thcbuffcring technique uscdcmatesandt hen fills holcsinthc main particlearrayas
particles arc traded as dcscribcd by Licwer and Decyk~.

Thus, for a code partitioned in all three dimensions (D=3), particle arc exchanged first in x,
then y, and then z to move thcm to the appropriate processor. Parliclcs that move
diagonally arc automatically handled properly in this scheme. By using this scheme, only
two buffers are needed for exchanging the panicles m opposed to the 26 that would be
nccdcd if all three dimensions were considered simultaneously. Similarly, only 6
communication calls arc necessary as opposed to 2.6. For the usual case when particles
move only to “nearest neighbor” domains, onc pass through this loop moves particles to
the proper processor. By allowing multiple passes through this loop, the code can handle
the more general case that particles must move to a processor an arbitrary number of hops
away. This is ncccssary if dynamic load balancing is employed and may bc necessary for
other decomposition strategies as well. To handle such case, the loop is repeated until all
particles have been passed the necessary number of times to reach the appropriate
processor.

The guard-cell cxchangc following the deposit is handled using the same basic strate~y of
communicating and filling in each dimension separately. Note that as long as all guard-
CC1lS arc exchanged and added to appropriate interior and/or guard-cells, all of the corner
CC1lS, which arc rccciving deposits from several processors, arc properly handled by this
schcmc. Moreover, since the communication is done inside a loop over dimensions, the
buffers need only bc sufficiently large to pass the maximum number of particles or grid-
points that arc traded in each dimension. Note also that by treating the communication
‘separately in each dimension, the code is more flexible and can bc more easily modified to
run in one, two, or three dimensions depending on the needs of the physical problem being
studied. Appendix A describes a potential problem for users of the present Intel compiler.
This involves issues of machine precision, arithmetic, and the evaluation of conditional
operators - the user of any new compiler should bear in mind that may bccomc a problem.
The problem is avoided by ensuring sufficient number of guard-cells (NG), and looping
over the trade step to ensure that all particles are in their appropriate ciomains before the
deposit step.

At present wc arc using Intel Touchstone Delta (512. node) and Imcl Gamma (64 nodes)
machines at Caltech. The smaller machine is useful during the dcvclopmcnt and debugging
phase while the Delta is used for the production and performance runs. These machines arc
coarse-graincd memory MIMD: the available memory is about 12.5 Megabytes pcr node for
the Delta, and 15 Megabytes pcr node for Gamma, lror our electrostatic code on the Delta

7

wc can fit about 290,000 particles per node. Using 512 nodes on the Delta, we have run
up to 150 million particles with a push time of 0.25 microseconds pcr particle per time step
(electrostatic push with quadratic interpolations for gatlm/scatter). The I“lclta has at least 10
times the computing power of a single processor Cray Y-MP.

Our code has been written in Eixpress-FORTRAN Is. This is a single-program-multiple-data
(SPMD) variation on multiple-instruction-mul(iple-datii (MIMI)) programming style. The
code is written and compiled into a single object code. Each processor runs the object with
a separate program counter and is loosely synchronized via message-passing and global
communication functions. A standard interprocessor buffer ‘exchange’ call is used to trade
particle and grid-point data, When the field-solve is i~lvoked, a standard global buffer
‘combine’ operation is used to collect the separate density arrays into a single global array
that is reproduced on each processor. The processor-geometry, that is, the way in which
the processors map onto x space, is derived from 13xpress automatic decomposition tools.
Each processor is identified by aphysiu.d node number that is between O, and NP-l,
where NP is the number of processors. The physical node numbers arc used as arguments
to the communication calls. The user specifics how many processors arc in each
dimension; for example a problem may have 8 processors in the x direction, 4 in the y, and
2 in z, giving a total of NP = 64. Express calls provide the ncamst-neighbor processors in
the physical grid. The position of each processor relative to some origin node (usually the
node the includes the origin of the x coordinate system in its primary domain) is specified
by a logical node number. The logical node number star~s as (0,0,()) at the origin and
increments by integer amounts in each dimension. This is used to keep track of spatial
offset for each processor relative to the x origin. The logical node numbers can be derived
simply from the information obtained from the Express automatic decomposition tools.

The main particle loop involves the following subroutines, in order: push{), tradeo,
dcposito, solveo, and finally a diagnostic routine. The traditional particle gather step
occurs in pusho, and tic scatter step is in dcposito. We employ three point per dimension
(e.g., quadratic) interpolation for both gathcr!scatter. The code has been setup so that,
when the dimensionality d of the code is changed, a switch in a global include file, changes
the interpolation scheme automatically to handle d=] (three point intmpolation), d=2 (nine
point interpolation), and d=3 (twenty seven point interpolation). Communication calls
appear in tradco, where the particles are exchanged; in deposit, where guard-cells arc
exchanged to evaluate the correct particle density; and in solve{) where the separate
processor density arrays arc combined into a global array.

To simplify the gather/scatter steps, array indices within a processor are based on the global
indexing, e.g., field arrays arc dimensioned as

dimension i.._left_array-. bcJund (3) , i-r i ght_array. bound (3)

dimension f ield_a.rray (i_lef t._.arraY__boUnd
1 i_lef L_.array_bound

2 i_lef t__array_.bound

1) : i-, ri ght._array-_bound (1) ,

2) : j-. right _array_bound (2) ,

3) : i-right_ array._bound (3))

8

where i_left_array...bound (i) [i__right_array.-bC> und(i)l istheglobal index of this
processor’s lowest [highest] grid-point in the ith direction. These arlays boundaries arc
computed from the processor logical node number, the physical boundaries of the
processor’s subdomain and the number of guard-cells (NG). Thus, if a processor’s
subdomain starts at grid-point k in the x direction, L1 ef t_arraY_bOUnd (3) ‘k-NG.
(Logical node number arc used nowhere else in the code; physical node number arc used in
the communication routirms.) By indexing in this way, array index rcfcrcnces that apply
during the particle gather/scatter steps arc exacdy as drcy would befbr a sequential code; no
processor offset arc used in the gather/scatter steps. The array boundary values,
i_lef t_array_bound (i) and j _right._.arraY_lmurld (i), arc passed as subroutine
arguments.

We have also made the code flexible in the following areas: with small changes to an
‘include’ file wc can change between a onc (d=l), two (d=2), and three (d=3) dimensional
code, as well as between slabs (D= 1), rods (1>=2), and cubes (D=3) for the primary
(part.iclc) decomposition of the grid. Also, depending on the needs of the gather/scatter
interpolation scheme, wc can easily change the number of guard-cells used.

The code uses dimensionless units. Thus the time ste~) between successive cycles of the
code is normalized in terms of the inverse plasma frequency ~-’ = (4nnCe2/me)-l/2 where
ne is the average electron density, and mc is the electron mass. Vclocitics arc normalized by
O@ where A is the grid spacing. We have only one dynamical spccics present (electrons);
the ions arc assumed to be a charge neutralizing fixed background.

3. Performance Results

In this section, timing results from three sets of runs are presented
the parallel efficiency of the particle push portion of the code. The

and analyzed to study
first set shows the

dcp&dence of the efficiency-on the &mensionality D of the domain decomposition and the
scaling of the efficiency for a fixed size problcm size, The second set shows the variation in
efficiency for a scaled problcrn. The third set shows the dcpendcncc of the efficiency on the
pcrccntagc of particles exchanged per processor pcr time step.

In our parallel code, performance is degraded by cormnunication nccdcd to trade particles
after the position update and to cxchangc guard-ccl] information aflcr the charge deposit.
We dclinc the communication time as

~comn] “ ‘k + ~gu> (1)

where ~ti is the parliclc trade time and ~~u is the guard-cell communication time. ~~U
incorporates the time to actually exchange the cells and the time to pack and unpack them,
all of which arc parallel costs. The trade time TW incorporates both the time to actually
exchange the particles an(i the time to unpack the traded particles into the particle array.
Unpacking is actually not a communication cost, but it is a parallel cost. Typically the

9

unpacking time is bctwccn 20% and 30% of the actual exchange time, indicating the greater
expense of intcrproccssor communication relative to the. local memory access involved in
the unpack. Generally ~h and ~~, are about the same magnitude for these runs. These times -
arc discussed more in Sec. 4.

Wc define the computation time ~cl)u as

where ~pu~h is the time to perform the parliclc force interpolation (gather) and velocity and
position updates, ~d~ is the time to deposit the particles’ charge onto the grid (calculate the
charge density), and ~bC is the time to check the particles’ position against the global and
local boundary and pack the particles for trade as necessary. Note that the pack portion of
~b~ is, in fact, a parallel cost. However, it is much smaller than the boundary check which
must be performed even in a sequential code. We use this definition in order to be able to
compare measured times with predictions using the formulas derived in Sec. 4. The three
costs in ~cpu are all proportional to the number of particles per processor N/N}~ where N is
the number of particles and NI> is the number of processors.

Using these definitions, the total run time is z = ~CO.m+ Icpu and we define the parallel
efficiency of the code to be

& = 1/(1 + 7com/Tcpu), (3)

For a onc processor run with no communication, the efficiency is 100%. Wc have not
included any degradation in efficiency due to processol load imbalance because the cases
run have uniform particle distribution and equal processor computation loads.

a. Variation with Dimensionality of Dom~in Decomposition

First, the dependence of the parallel efficiency on the dimensionality of the domain
decomposition D was investigated. A fixed three-dimensional (d=3) problem was run for
D=l, 2 and 3 on various numbers of processors. This problem is chosen to be the
maximum that fits on a single processor: N=643=262, 144 particles, N~=32s grid-points.
Other parameters are At=O.2, and plasma thermal velocityVti,=0.812 (WC used a truncated
Maxwellian distribution, which we had found useful for debugging, purposes). For the
single processor run, the size of the executable that is loaded onto each node is 10.2
megabytes. For more than one processor less memory is required since the fixed number
of particles is divided amongst the processors. For a slab (D= 1) partition we performed
runs with 2,4,8, and 16 processors. For a partition into rods (D=2), the number of
processors used was 4 (=22, i.e. 2 processors in x and 2 processors in y), 16 (=42),64
(=82), and 256 (=162). For cubes (D=3), We used 8 (=23),64(= 4F), and 512 (=83).

10

The results for efficiency & versus the number of processors NIJ are plotl~d in Figure 3 for
D=l (opcncircles), Il=2(o~Jen triangles) and D=3(opellsquues). Ilcefficiency
dccrcascs with increasing number of processors as expected for a fixed sim problem. The
fact that it is so CIOSC to 1 indicates how small the communications burden is relative to
CPU. Also plotted in Fig. 3 is the percent. of particles t] aded pcr processor per time step
for D= 1 (filled circles), D==2 (filled triangles) and 1>=3 (filled squares). Note that, for the
D=3 case withNl,=512 and 11% of a processor’s particles exchanged pcr time step, the
efficiency is still 91.570. As expected, at a fixed number of processors, the percentage of
particles traded is largest for D==] because. the slab subdomains have the largest surface to
volume ratio. Figure 4, which plots ~COnl~/~cpu for the same cases for 1>=1, 2, and 3
(using circles, squares and triangles respectively), shows the steady increase in
communication cost as the processor subdomains get smaller and relatively more particles
and guard-cells are being traded. Note, however, that in both Fig,. 3 and Fig. 4, the curves
for all three values of D lic essentially on top of each other showing that the communication
to computation ratio and, thus, the parallel efficiency is relatively insensitive to D for these
parameters.

The communication to computation ratio for this code should scale as the surface to volume
ratio, suggesting that ~COmm/ZcpU would decrease with D. The surface to volume ratio of a
subdomain for arbitrary d and D is

S/V= 2 D NP1llV N#d

where Ng is the total number of grid-points (SO Ng lkl is he nlmber in each direction) and
2D is the number of surface between processor subdomains. Since communication is only
necessary across faces separating processor domains, the number of surfaces increases
with D. Note that this expression for surface to volun-le ratio applies strictly to the case of
periodic boundary conditions, and a uniform plasma where the domains are of equal size.
At the end of Section 4 we discuss the situation of an inhomogcneous plasma. At this
stage We note that for]argc problems with Np >512 the comn~unications will bc don~inated
by the interior domains - away from the boundaries. For small Nl, this expression is
somewhat artificial (in particular for NJ) = 1 it is only a measure of S/V for a single periodic
cube, however clearly no communications are needed in a single-processor sequential
code). As wc stated in the introduction, the goal of the paper is to show that the parallel
pcrfom~ancc of the 311 GCPIC method is efficient fol realistic prot~lems (Np >>1), and to
show that it is predictable so long as some machine parameters such as flop rate and
communication rate arc precalculated. It can bc seen that there arc two reasons why
zmn,nl/~cI)u appears insensitive to D for small values of Np. First, for sn~all Np, fie
exponential decrease (NP1 ‘>) for increa!!ing D is conv)cnsat~d for by the linear incre~~c in
the number of faces. Note that the largest number of processors Llscd for D= 1 was NP=8
for which S/V(D=l)=16/ Nglld vs. S/V(D=3)=l 2/Nr,lfd and thus the ratio is 4/3. The
second reason that the efficiency is insensitive to D for these runs is that as D increases,
more communication calls arc initiated since wc exchange information separately in each
dimension D of *C decomposition. Thus, duc to communication latency, the extra

11

communication calls needed for higher D counteracts the decrease in the total number of
bytes communicated. For large problems on large numl~ers of processors we expect that
t.hc dcpcndcncy of parallel efficiency on the dimcnsionality of the decomposition D to
bccomc more significant. This is already apparent for the pcrccntagc of particles traded for “
D= 1 in Figure 3. Our problem was simply not large enough to demonstrate the behavior
for Nl,>>16. Similarly, the difference between D = 2 and D = 3 is not so apparent even
for Nl,=512, however for large problems on larger computers wc expect the difference to
be more significant.

Also shown in Fig, 3 arc the theoretically calculated values for the pclccntagc of particles
traded for D=], 2 and 3 (dashed lines); d-m agreement is excellent as expected for our
known truncated Maxwcllian distribution. The percentage traded is the number of particles
traded per processor per time step N@ divided by the number pcr processor N/Np. The
number of particles traded per time step will be the flux through each subdomain face
multiplied by the surface area of the face times At times the number of faces. The number
of subdomain faces is 21] since particle exchanges arc only necessary through faces
separating processor subdomains. Here, wc asssumc Ax =Ay=Az= 1 and that an equal
number of processors (NPlfl)) is assignecl to each deco] nposition dimension as in Fig. 2.
The total number of grid-points is N~ and N~ l/~ is the number of grid-points in each
direction where d=3 for the three dimensional cases in the paper. For a thermal species the
flux of particles that cross a two- dimensional surface is given by C4 n Vti, where Vtil is the
thermal (rms) velocity, n is the particle density (n=NIN@xd), and CA is a coefficient which
is 1 /(27c)l/z for a homogeneous maxwcllian distribution14 (for a directed beam wc can
rcplacc Vti) by the beam velocity, and C4 - 1). Assuming square cross section rods and
cubes, the surface area of each face of a processor domain is N~d-l’(iAxd-l/ Npi~-lJfl]. The
number traded is then, for arbitrary code dimensionality d and decomposition
dimcnsiona]ity D,

Nti == 2 D C4 (v~l, At/Ax) N / (N#d N$IJ-l)n>).

and the fraction of particles traded pcr processor per time step is

N,, /(N/Np) = 2 D C4 (v~h At/Ax) NPlnV N#d .

The predicted percentages shown in Fig. 3 were calculated using
the fraction traded is proportional to the surface to volume ratio,

(4)

(5)

this equation. Note that
s/v=2DNplflYNgl/d.

There is, in fact, a systcm~atic but small error not visible on the graph which wc athbute to
our usc of a truncated maxwcl]ian distribution. By comparing F~ (5) with the actual
numbers of particles traded a rncasurcd value C4 can bc calculated. 1 ‘or all of the runs in the
present series this quantity is roughly constant, and has an arithmetic mean of c4~ = 0.43
compared with C4 = l/(2Tc)llz = 0.40. In future calculations based on the above equations
wc will usc the value c4n) in place of C4.

12

These first series of runs were performed with the default (-O 1) compiler option. For Ihc
sillg]c processor run, ~push := 50.0 seconds, ~~C (essentially the time to check the particles
for boundary conditions) == 5.75 seconds, and ~d~=l 6.6 seconds. Note the relatively
higher cost of computation plus g,ather/scatter compared with the check of boundary
conditions. This is partially because the latter dots not involve the loop cache incfticicncy
associated with grid-points from the random particle positions.

b. Efficiency for Scaled Problem

In the next series of runs, the efficiency was studied as the problcm sized increased linearly
with the number of processors so that the problem size in each node was fixed. All runs
used the D=3 cube decomposition, The problem size on each node corresponds to the
fixed problem size for the cases in Figs. 3 and 4 and is the largest problcm that fits in one
node: N=64~=262,144 particles and Ng==32~ grid-points. With this size problem in each Of
the 512 nodes, the total number of particles is N = 512:{ = 134 million and the total number
of grid-points is N~= 2563= 17 million. Intuitively this scaled problem should be highly
cfficicnt since on a percentage basis no more particles or grid-points arc communicated as
more processors arc used, Note that this large number of grid-points could not fit on a
single processor. Hence for these large runs, the field- SOIVC (including the full N~ field
array) was not applied. Only the local field to each domain was included in each processor,
and that is how it should be for a distributed-memory massively-palallcl algorithm. In this
case wc ran the code only for the purpose of obtaining
algorithm and associated communications.

The rcsul~$ arc summarized in Fig. 5. The efficiency 8
goes from 0.95 to 1.0; the measured ratio ~N~nl / ICpU

numbers for particle pushing

(squares) uses the left axis which
(circles) uses the right axis which

goes fro O to 0.05. Note that the efficiency is always >99% and is independent of the
number of processor used as expected for the scaled problem runs. This illustrates the
cxtrcmcly high efficiency for this algorithm when the nodes are WC]] utilized, In the runs
with Np> 1, there arc about 3,400 particles traded per processor representing about 1.3% of
particles. The predicted ratio ~COm/~cr,u (dashed line) will be discussed in Sec. 4.

c. Variation with Particles per Processor

The cases in Figs, 3-5 showed very high efficiencies when a small portion of the particle
were traded. To test the efficiency of the algorithm when a larger percentage of the particles
were traded, a series of runs were made with a constat~t number of particles but a
decreasing number of grid cells. For our three-dimensional code, Eq. (5) shows that the
percentage of parliclcs traded is proportional to N~-11~, the number of grid-points in each
dimension d, for other parameters held fixed. The results of these runs are shown in Fig. 6
plotted as a function of N~lls, the number of grid-points in each direction. The top curve is
the parallel efficiency (triangles) and the second curve is the fracLion of particles traded per
processor pcr t.imc step (squares). Note that even when 40% of the parliclcs in each

13

I

processor arc traded at each time step, the algorithm still has 95% parallel efficiency. Also
plotted arc the measured &,n,nl/~Cp~J (circles) and the predicted z~m,,i@LJ (d~$hcd line).
The prcdictcd ratio will bc derived and discussed in the next section.

4. Performance Analysis

a. Theoretical Discussiotz

Ilcrc, wc derive expressions for the timing and efficiency in terms of code and machine
dcpcndcnt parameters, We have adopted a similar fom~ulation to that of Lee and Azari15
and wc loosely follow their nomenclature. However, ill our work wc have more closely
paramctcriz.cd the behavior of our code. llc expressions derived here were used to
gcncratc Ihc prcdictcd curves in Fig. 5 and 6 and can bc used to predict scaling behavior on
other large massively parallel computers once the machine dependent parameters are
known.

The code efficiency was defined in F@. (3) in terms of the communication time ~mn,., and
the computation time ZCPU, defined in Eel, (1) and (2,) rcspcctivcly. First, we derive an
expression for the communication time ~mnml = Zh + t~U. Consider ~v, incorporating both
the time to actually exchange the particles and the time to unpack the traded particles into the
particle array. This trade time can bc written as the number of bytes of information traded
divided by an effective bandwidth (in bytes per second) for trading particle information B&.
This cffcctivc bandwidth will bc considerably lower than the rated channel hardware
bandwidth because a) overhead due to communication startup (latency) adds some
nonlinearity and b) it includes the user-time to unpack the parliclc information as WC1l as the
systcm-copy time. Thus, in general, Bti will depend Jlot only on the hardware, but, also
on the size of the messages being passed bccausc of the effects of latency. Wc write

(6)

where NW is the number of particles traded pcr processor per time step [13q. (5)], co = 4
bytes pcr word (single precision), and C3 = 7 words of information pcr particle (3 space, 3
velocity and a tag). Similarly, ~~u, which incorporates the time the actually cxchangc the
CCIIS and the time to pack and unpack them, can be WI ittcn as the nurnbcr of bytes of guard-
CCII information cxchangcd (bytes per word times 1 word per guard-cell) divided by the
cffcctivc bandwidth for exchanging guard-ccl] information B ~U. Thus, with N~u the number
of guard-cells, wc write

~gu = co Ngu / 13~U. (7)

As for B& , B~u will bc less than the rated hardware bandwidth and will depend on message
size. The number of guard-cells that must be commu] iicatcd is the number of guard-cells
pcr face (it, the number of guard-cells in each dimension multiplied by the number of grid-
points pcr face) multiplied by the number of faces (= 2 D). “1’hc number of grid-points per
face is N~t~-lJld /NP@-l)/l~, giving

14

N~U = 2 D NG N$l)fd /NP@-l)n> (8)

where NG is the number of guard-ccl]s in each dimension at each domain boundary. As
discussed in Sec. 2, NG is generally dctcrmincd by the interpolation schcmc used and is
chosen so that the interpolations can be done locally. For the quadratic interpolation
scheme used in the present code, NG=2.

The effcctivc bandwidths Bti and B~U in Elqs. (4-5) are machine dependent parameters that
must bc dctcrmincd empirically. Ideally, these bandwidths would bc constant for a given
computer, but, bccausc of the communication overhead associated with sending a message
(Iatcncy), wc expect an additional dependence on message sire. Moreover, because Zk and
~~u also include some buffer packing and unpacking, they will, by definition, be lower than
the rated channel communication bandwidth. We will determine these for the Delta using
the runs in Sec. 3a and b (Figs, 3-4).

Note that for a code which uses a local finite difference field-solve and uses the primary
decomposition to pmtition the field-solve, the only additional communication cost will bc
the time to cxchangc the field guard-cell information. I’hus this analysis can bc extended to
include communication costs of such a field-solve by simply multiply III. (7) by the total
number of field cluantitics.

Next, we derive an expression for the computation time TCPU = zI,u,il + ~dc + Tbc, where

TI,US1, is fic time to perform tie particle force in~rpolation (ga~cr) and orbit update> ~de iS
the time to deposit (scatter) the particle charge to the grid, and ~b~ is the time to check the
particles global and local boundary and pack the particles for trade as necessmy. With the
cxccption of packing the particles to bc traded (a negligible contribution), these times are
proportional to the number of particles per processor N/Np and wc paramcterizcd this time
as

TCPLJ = C7 (N/Np) / F , (9)

where C7 is a constant taken to bc the total number of FLOPS involved in the particle and
charge density update pcr time step and F; is an effect.ivc flop-rate for the computation
which has units FLOPS and, as above, is an ‘effective’ rate whose value will be lCSS than
the rated FLOPS pcr processor. For our code in three dimensions (d=3), wc estimate C7 =
404 (294 in the gather and orbit update, and 11() in the scatter dctcrmincd by counting +
and * each as 1 FLOP). Included in ‘@~J is also the memory access time associated with
the parLiclc pack and boundary condition chcckcr in subroutine tracico. Thus, although
there is a small cost incurred bccausc of parallel processing, wc characterize it together with
other proccsscs whose cost is proportional to the number of particles pcr processor N/Np.
Wc note that in our implementation the particle boundary conditions arc applied at the same
time as the packing process and the comparison with the primary domain boundaries uscs
almost the same FORTRAN code as the comparison with the global physical domain

15

boumlarics. Equation (9) defines the cffectivc 110P ra(c F which must bc determined for
each parallel computer; wc will usc the runs in Sec. 3a 10 evaluate it for the Delta.

The (luantity Imn,,n / ~~J,[J can then bc written as

‘tCon,n, / ‘@[J c ‘% / ‘tCPLJ + @ ~CPU

where

q./ ~Cp~J = (2 D co NG / C7) N&lJfd N$m N-1 F / B~U,

(lo)

(11)

(12)

where C5 = v~h At/Ax. Note that both ratios depend on the surface to volume ratio of the
subdomains, S/V= 2DNP1/rV N~ljd. While equations (1)-(12) paramctcrize the timing of the
code, at this point the coefficient F, as well as B~U and Bk am unknown. The fixed
problcm runs from Sec. 3.a are used to determine thcm empirically.

Figure 7 shows the effective FLOPS rate F, normalized to onc mcgaFLOPS, determined
from FZ. 9 using the measured TCPU for the runs of Sec. 3.a for D= 1,2 and 3 plotted as
circles, triangles and sc~uares respectively. The plot shows that F is approximately constant,
indcpcndcnt of the number of processors NP and the di mensionality of the domain
decomposition D. Interestingly F shows a small increase with NP. we also noticed that for
the first 30 time steps of these runs ~CplJ showed a S@:ldy increase of about 8%. This can
bc traced to a gradual diminishment of cache efficiency as particles, which were initialized
uniformly in space, are randomized duc to their thermal motions. The limes that wc have
used in this study arc averaged over the last five time steps of a thirty time step run. This
increase is an interesting insight into well known local memory access inefficiency of the
gather/scatter process -- the ‘@lJ is initially smaller because wc have effectively sorted the
particles relative to the grid at time step 1. The increase in TCIJU occurs at a different rate for
increasing NP, that is, as the domain of each processor becomes smaller. The differing rate
of increase of @)~J is responsible for the apparent small incrcasc in F.

Figure 8a shows the cffectivc trade bandwidth B&, and Fig. 8b the number of particles and
bytes traded for D=l, 2, and 3 plotted as circles, triangles and squares respective] y. The
dominant behavior is the drop in communication speui as the number of bytes traded
dccrca.ses for D=2 and 3. This is the anticipated degradation duc to the communication
latency (start-up) cost m the size of buffers decreases. IntellG state that the latency for
standard node-to-node communications becomes significant when the number of bytes falls
below 10~. We observe similar behavior here for Ihe Express buffer-exchange routine that
wc USC. Note that B& contains a particle buffer-unpack cost that is bctwccn 20% to 30% of
the overall particle-trade cost, but its contribution will vary approximately linearly with the
number of bytes traded. Note also that the bandwidth is lower for D=3 than D=2 when the
same nurnbcr of bytes arc exchanged. This is because the number of messages actually

16

passed is proportional to D bccausc wc exchange in each decomposition direction
separately, as discussed in Sec. 2,, and thus effects of latency arc incrcascd.

Figure 9a shows the cffcctivc bandwidth for guard-cell communication Bg., While Fig. % “
shows the nurnbcr of guard-cells (and bytes) traded for D= 1,2 and 3 plotted as circles,
triangles and squares respectively. For D:=2 and 3 as above, 13~u falls of with the number of
bytes communicated. (The observed slight incrcasc for D=l occurs because the code was
written to implement periodic boundary conditions in the same loop that communications
arc performed. The actual number of CCM traded pcr pl occssor remains constant for D= 1.)
Note that B~U is smaller than Bm, due in part to the fact that 13~u contains both a guard-ccl]
buffer pack and unpack costs while B& contains just the. particle unpack costs and in part
duc the on-average smaller number of bytes traded. Bg,, does not show as large a difference
between D=2 and D=3 presumably because of the stronger dependence on the packing and
unpacking which is indcpcndcnt of D.

b. Comparison with Measured Code Times

Using the results of the above analysis and the determination of the cffectivc bandwidths
and their dcpcndencc on message size, wc now calculalc the predicted ratios ~@~#zcI~u
and ~~U / ~ti for other runs and compare it with measured ratios.

The prcdictcd ~Com,,/~cpu was calculated for the scaled problcm runs (Fig. 5) using Eqs.
(10-12) with an effcctivc flop rate of F:= 1.47 (Fig. 7) and using usc B@ = 0.96 and B~u =
0.49. These bandwidths arc found from Figs. 8 and 9 extrapolating to the value appropriate
to the number of bytes being cxchangcd, calculated using Eqs. 4 and 8. Both measured and
prcdictcd ratios of ~@~~/ZclJu are shown in Fig. 5 and tic agreement in excellent. For these
scaled problem runs, the prcdictcd ratio is constant as measured. Wc note that the particle
trade and the guard-ccl] exchange each compose half of the estimated ratio. The scaled runs
in Fig. 5 were performed with the -01 compiler option. When the -04 option is used the
cffcclivc FLOP rate F increases by a factor of around 2.8. With this option the scaled runs
perform with a push time of around 250 nsec per particle pcr time step.

The theoretical analysis was also used to predict the pc.rformance for the runs in Fig. 6. For
this case, NP=512, N=512S, ancl only N~ wass varied. Using Figs. 7 and 8, the quantities F
= 1.47, and BW = 0.96 were used for all N~ since these depend only on Np However, the
amount of guard-cell information exchanged varied with N~ and, thus the value of B~U,
interpolated from Fig. 9, varied with N~. (The values used were BP,U = 0.31.0.66, 0.96,
0.96 for Nli~ = 64,128,256,512 respectively.) The comparison between the estimated
and measured communication ratios, zCO~n,/q:pu, shown in Fig. 6 is quite good. Wc note
that the run with NglJq = 32 corresponds to the N1~=:5 12, D=3 fixed problcm case in Sec.
3a (Fig. 3&4) in all parameters cxccpt the total nurnbc.r of particles. In the former 27,000
particles were traded on average (1170), while in the fixed problcm run 55 particles were
traded (also 11%). However in the former the communication ratio is 0.0138 while for the
fixed problcm run it is 0.085. The improvement is due to the higher cffcctivc bandwidth
BW as the larger number of particles traded reduces the effect of communication latency.

17

As a final example, in Fig. 1() wc have also compared the measured and estimated (dashed
line) values for the ratio ~~,, / ~k for a set of runs in which only the number of particles was
varied. For these runs, NI,:=5 12, D=3 and N~li~ = 32. N was varied from NIIS = 64 to
512. We note that the run with Nils = 64 corresponds to theN1>=512, D=3 fixed problem
case in Sec. 3a (Fig. 3&4). As expected, the ratio is very sensitive to the number of
particles and the agrccmcnt bctwccn the measured and estimated values is cxcellcnt.

c. lhe Cuse of Inhonwgeneou.v Plasmas

The situation where the density of particles is non-uniform adds to the complexity of the
resulting code, however it does not necessarily alter the performance from what we have
dcscribcd to this point. Since the CPU cost is so dominant, load balancing requires that
the ratio of parlicles to processors be a constant everywhere in tic domain. The software
must bc altered 10 allow for domains of varying size such that the ratio Ni/NPi is a constant.
Wc have added a ncw subscript here ‘i’ to distinguish between regions where the density
is changing -- thcrcforc, Ni (N~i) is the number of parlicles (processors) assigned to region
‘i’ where the density is Ni/N~i particles pcr local grid point, What changes is the ratio of
the time to communicate partic]cs to the time to communicate grid points. From Eqs. (1 1)
and (12) wc can easily show that

~wi / ~gUi c (C3 C4 C5 /NG) (B{:. / Bti) Ni ~gi (13)

That is, for Ni/N~i = constant, the ratio of cost to communicate particles versus the cost to
communicate grid points is given by some constant til nes the local density of particles pcr
grid point, For the parameters used in the first set of (uniform density) runs in Section 3a
this ratio is ~h / ~gu -0. I (N/N2,) = 0.8; clear] y for eight particles per grid point this cost
ratio is well balanced. For the case of strongl y inhomogcncous p] asmas wc would expect
this ratio to become unbalanced in some regions. However, while the CPU cost is so
dominan~, this imbalance is not important. Most of the results of this paper have been
quoted for the unoptimiz,ed compiler option (-O 1). ?Ience any weakness in the above
argument would not have been exposed. However in in the case of highest optimization
(-04), our conclusion dots not change. Only when the processor speed is increased
considcrabl y with respect to the communication speeds for MIMI] machines - and we do
not expect this to happen in the near future - WOU1 d our conclusions bc altered. We
emphasise our prior point that wc have provided a consistent framework whereby the
performance can bc assessed in terms of the simply derived machine parameters F, 13~u,
B~r, and memory per processor.

4. conclusions

Wc have developed a three-dimensional electrostatic parliclc-in-cell (PIC) plasma code for
MIMD massively parallel supcrcomputers such as the Intel Delta and Gamma. The particle
push portion of the code, which accounts for most (-90%) of the computation, is
implcmcntcd using the GCPIC algoritlm2 in which the parLiclc computation is divided

18

among the processors using a domain decomposition. 3 ‘his work is an extension to three
dimensions of previous work using the GCPIC algorithm2’3. In Ihc parallel code,
inter-processor communication is necessary at two stages in the particle push. After the
~articlc Positions are updated, I)articles which have left a subdomain must be passed to the “.
appropriate processor. ‘After th~> charge deposition, gual d-cell information must be
exchanged. Very high parallel efficiencies arc found fol the particle push, with the
efficiency >99% for cases when the nodes are fully utili zeal. The efficiency was found
>9570 even when up to 4070 of the particles per processor per time step were traded.
Bccausc of this high efficiency even for large pcrcentag,es of the particles traded, the

to be

GCPIC algorithm-should also-be efficient for non-uniform particle distributions where sub-
domains in regions of high particle density will be relatively small with large fractions of
the particle leaving each time step.

In a three-dimensional code, the simulation domain can be partitioned in 1,2 or 3
dimensional subdomains (slabs, rods, cubes). The ratio of communication to computation
scales as the surface to volume ratio of the subdomains and thus a three-dimensional
partition should be optimum. The efficiencies of the particle push was studied as a function
of dimcnsionality of the subdomains. For the parameters studied, the efficiency was
relatively insensitive to the subdomain dimensionality. This resulted from an increasing
number of communication calls with higher subdomain dimensionality counterbalancing the
surface to volume ratio effect. Only for small numbers of processors (< 8) will these effects
cancel. For large number of processors, the surface to volume effect will dominate and the
three-dimensional partitions will be more efficient.

Equations for predicting code performance based on code and machine dependent
parameters were also developed. Machine dependent parameters were found from one set
of runs. Predictions using the equation were in excellent agreement with measured
performance in other sets of runs. Thus these formulae can be used to predict pcrfom~ance
on other parallel computers once the machine dependent parameters have been established
from a set of “calibration” runs. We expect that these formulae will be useful for the case
of inhornogencous plasmas with non-periodic boundaly conditions, as discussed in Section
4.

Acknowledgments

Wc would like to acknowledge useful discussions with Mark Kiefcr, David Forslund,
Edith Huang, Bob Kales, Erik hlatson (Jet Propulsion Laboratory Scientific Visualization
Laboratory), David Payne (Intel), and Patti Sparks, This work was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. The research was support in part by
Sandia National Laboratory, Albuquerque and in part by NSF under Cooperative
Agreement CCR-88809615. Ilc computations were performed on the Intel Touchstone
Delta parallel supcrcomputer operated for the Concurnmt Supercomputing Consortium by
the California Institute of Technology; access was provided by NASA.

19

Appendix A. Discussion of Machine Precision and Compiler Issues.

A common operation in any particle code involves the addition of an integer or half integer
to a particle position. This happens when periodic boundary conditions are applied, and
during the calculation of array indices during gather/scatter steps. (onsider firstly the
application of pcriodicity. At present the global physical domain is taken to be -0.5 e= xi <
Ni-0.5, where subscript i refers to spatial dimension, xi is the. particle position, and Ni is
the number of grid-points in that dimension. Consider a particle whose position is -0.5-c
where c is C1OSC to machine precision, but sufficiently finite that FORTRAN if(xi e -0.5) is
true. In that case the pmiodicity condition is xi = xi + Ni, which should be evaluate to Ni-
0.5-&, However the present i860 compiler on the Delta evaluates this to exactly Ni-0.5.
This number not satisfy the condition of being inside the physical domain. The solution is
to make sure that the boundary conditions are applied twice, so the particle is returned to -
0.5. The problem has another manifestation in that a particle at position Ni-0.5-E will, for
the same reasons, incorrectly identify its nearest grid-point as int(x-t 1.5) = Ni+l, thus
incurring the possibility of a segmentation violation du]ing the scat[cr step. This problem is
handled by ensuring the at least two guard-cells are used at both ends of each domain for
three point interpolation. In general, the physical domain boundaries do not need to lic on
half integer (or even intc.ger) positions, however some care is always needed to ensure
enough guard-cells arc used.

20

Rcfcrcnccs

(1) C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer $’irnulation,
(McGraw-Hill, Ncw York, 1985); R. W. Hockney and J. W. Eastwood, Computer
Sinudutioon using Particles, (McGraw-Hill 1981).

(2) P.C. Licwer and V,K. Dccyk, “A General Concunent Algorithm for Plasma Particle-
in-Cell Simulation Codes”, J. Comput. Phys. 85, 302 (1989).

(3) R.D. Ferraro, P.C. Liewer, and V.K. Dccyk, “Dynamic load Balancing for a 2D
Concurrent Plasma PIC Code”, J. Comput. Phys. 109, 329 (1993).

(4) J. Wang, P.C. Liewer, V.K. Decyk, “A Parallel Three-Dinmnsional Electromagnetic
PIC Code for MIMI) Parallel Computers,” (submitted for publication, 1994).

(5) J.M. Dawson, V.K. Decyk, R. Sydora, and P.C. Liewer, “llig,h-Perforrnance
Computing and Plasma Physics,” Physics Today, March, p. 64 (March 1993).

(6) D.W. Walker. Particle-in-Cell Plasma Simulation Codes on the Connection Machine,
Conzp14ting Systems in Engineering, 2, 307 (1991).

(7) R. G. Hohlfcld, N. F;. Comins, D. Shalit, P. A. Shorey, and R. C. Giles,
lmplcmentaion of Particle-in-Cell Stellar Dynamics Codes on the Connection Machhw-
2, J. Supercomputiag7,417 (1993).

(8) T. Thcuns, Parallel P3M with Exact Calculation of Short Range Forces, Oomp. Phys
Comm. 78, 328 (1994).

(9) Z. Johan, T. J. R. Hughes, K. K. Mathur, and S. L. Johnsson, A Data Parallel Finite
Element Method for Computational Fluid Dynamics on the Connection Machine
System, Computer methods in Applied Mechanics and Engineering 99, 113 (1992).

(10) H. D. Simon, Partitioning of Unstructured Problems for Parallel Processing,
Computer Systems in Engineering 2, 135 (1991).

(11) J. K. Salmon, M. S. Warren, G. S. Winckelmfins, Fast Parallel Tree Codes for
Gravitational and Fluid Dynamical N-Body Problems, The l}~lerrzational Journal oj
S14perconlp14ting Applications 8, 129 (1991).

(12) W.W. Lee, J. Comput. Phys. 72, 243 (1987).

(13) J. Flower, and A. Kolawa, Physics Reporfs 207, Nos. 305, p. 291 (1991) North
Holland.

21

(14) F. Rcif, Fundamentals of Statistical and Thermal Physics, (McGraw-Hill, New York,
1965)

(15) N.G. Azari and S.-Y. Lee, “Hybrid Task Partitioning for Particle-in-Cell Simulation
on Shared Memory Systems”, Procccding,s of lntm-national Conference on Distributed
Computing Systems, pp526-533, Dallas, TX, May 1991. S.-Y. l,ec and N.G. Azari,
“1 lybrid Task Dccomposiiion for Particle-in-Cell Methods on h~cssagc Passing
Systems”, Proceedings of international Conference on Parallel Processing, vol. 111,
pp141 -144, St. Charles, IL, August 1992.

(16) David Payne, Private Communication, (1992).

22

I

Figure Captions

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

GCPIC domain decomposition for a two-dimensional code. Each processor has a
sub-domain of the gricl, the particles in it, and guard-cells around the perimeter.

Possible GCPIC decompositions of a three-dimensional glid. One dimensional
“Slabs” (D=l), two-dimensiond “rods” (D=2), and three dimensional “cubes”
(11=3). Showing particles colored by processor.

Plot of measured parallel code efficiency (top curve and left axis) and percentage
of particles traded (lower curves and right axis) versus 10gJ,Np for D=l (circles)>
2(trianglcs), and 3(squares) for fixed problem size runs. The predicted
percentages of particles traded arc plotted as dashed lines.

Communication to computation ratio T~m#~CPU v~rs~ls 10g2Np for D=l (circles)>
2(triangles), and 3(squares) for fixed problcm size runs.

Parallel code efficiency (left axis) and ~comM/~C}J~J (right axis) versus number of
processors Np for scaled problem inns. The problcm si~c Pcr node is fixed so
the problem sim increases with Np. The predicted ratio ~comd~c}~u> derived in

Sec. 4, is plotted as a dashed line.

Parallel code efficiency (triangles), fraction of particles traded NkiN (squares),
measured ‘ccmm,r~~l>u (circles) and predicted %nm/&J (dashed line) and versus
the number of grid-points in one direction Ngl’3. “J~c expression for the
predicted ~Con,r./~Pu is derived in Sec. 4.

Effective FLOPS rate F versus logZNp for 11=1 (circles), 2(tfianglcs), and
3(squarcs) derived from the fixed problem runs in Figs. 3 and 4.

(a) Effective bandwidth for trading pwticles Bti v~rsus k)gqNp for D=] (circles))
2(triangles), and 3(squares) for fixed problem size runs. (b) Number of particles
and bytes traded versus logzNP for D= 1 (circles), 2(trianglcs), and ~(squares) for
fixed problem size inns. The bandwidth dl ops as the number of bytes {radcd
drops due to comrriunication latency (overhead).

Figure 9 (a) Plot of effective bandwidth for trading Suard-cells B8,U versus log2Np for
D=] (circles), 2(triangles), and 3(squares) for fixed problem size runs. (b) Plot
of the number of guard-ccl]s traded vcrs~ls logNp for 1~== 1 (circlcs),2(trianglcs)>
and 3(squares) for fixed problem size.

Figure 10 Measured(x) and estimated (dashed line) Values for th~ ratio ~gu / ~ti vs. number
of particles N for runs with NP=512, 11=3 and N~l’s = 32

23

Figure 1

Figure 2

1

0.8

0.6

0.4

0.2

0

r ‘- -

--@==. ===Q=====3$i=_=

L 1
I -1

I

0 1 2 3 4 5 6 78 9

log2(NJ

100

8 0

60

4 0

20

0

Figure 3

0.1

0.08

$
P 0.06

‘E
E

0.02

0

D=3 >

r D: 2 A

–-—L._——_——L—-— ___-L__ ‘_.___-.l-- .–...–L——-_L_L--------

o 1 2 3 4 6 7 8 9

log2(Np)

Figure 4

1

0.99

0.98

0.97

0.96

m 1

1’
._-T——

~.__r___ ~_(_...

‘—’—-m———————————— -+—-.-.==3
+-- E !

t

0.05

0.04

0.03

0.02

0.01

L --’—-—–—- ~—–” h

0.95 --1--.——_l___ —-–l-_—_J—.—— -—J———L._J___._J ()

0 1 2 3 4 5 6 789

log2(N)

Figure 5

1

0.8

a.)
3

a
> 0.6

cd
c
o.- 0.4
z
a
it

0.2

0

8 16 24 32 40 48 56 64

N
113

9

Figure 6

1.6

1.5
{

1.4

1.3

D=3

D=2

1.2 L___L-.-.___l___l__..——l———— 1- ~.—-- . ..1 ——L.1

0 1 2 3 4 5 6 7 8 9

log2(N)

Figure 7

1.2

1

0.8

0.6
.,

0.4

0.2

0

-–-l–---~—-,——~— -1—--—--f---~

[)=1

—_.L.-.-.J..~..—J———— 1— -—_L—————-.-L__!
0 1 2 3 4 5 6 7 8 9

logJNJ

Figure 8 (a)

c1)

1 0 0 0

5 0 0

O L

D=l
x“

of---- –._.+_-..*

L

Dz2
/

D = 3 – >
~

–--_L_.––J.J–. I __-L_—J— J.—.—— -L ---

01234567 89

log2(N)
P

4 2

3 6

6

0

Figure 8 (b)

co
CD

0.6

0.5

0 .4

0.3

0.2

0.1

0 L.L-—— I l___-L-_ l–--_L_-1
0 1 2 3 4 5 6 7 8 9

log2(N)

Figure 9 (a)

20 ‘

15

(n
a) 10
x
d’
x

5

0

–-—--l-—-–--r—----r---l-----—-1— ““”--r————l——— 1
o-—- —-—-–e-----+

D=2

/
D,~ +
~

Ld- — _ . . . L . . . — . - - l - . - - - - - J - - - - - - ‘-
.____ -l___ –.. -d..

o 1 2 3 4 6 7 8 9[,

log2(NF)

Figure 9 (b)

L

10

1

0.1

0.01

0.001

1 , 1 ,r-r-r--rrrr”l-l----l--- 7----- -r-p--- T“-”q
1

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
0

N1/3

Figure 10

